Corrosion Behavior of Titanium in Artificial Saliva by Lactic Acid

نویسندگان

  • Qing Qu
  • Lei Wang
  • Yajun Chen
  • Lei Li
  • Yue He
  • Zhongtao Ding
چکیده

As one of the main products produced by oral microorganisms, the role of lactic acid in the corrosion of titanium is very important. In this study, the corrosion behavior of titanium in artificial saliva with and without lactic acid were investigated by open-circuit potentials (OCPs), polarization curves and electrochemical impedance spectroscopy (EIS). OCP firstly increased with the amount of lactic acid from 0 to 3.2 g/L and then tended to decrease from 3.2 to 5.0 g/L. The corrosion of titanium was distinctly affected by lactic acid, and the corrosion rate increased with increasing the amount of lactic acid. At each concentration of lactic acid, the corrosion rate clearly increased with increasing the immersing time. Results of scanning electron microscopy (SEM) also indicated that lactic acid accelerated the pitting corrosion in artificial saliva. A probable mechanism was also proposed to explain the experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CORROSION BEHAVIOR OF BIOACTIVATED TITANIUM DENTAL IMPLANT USING DIFFERENT CHEMICAL METHODS

At the past, damaged tissue was removed from the body of patients. But now tissue regeneration using scaffolds and implants are used to repair the damaged tissue and organs. Besides of the mechanical properties of metallic biomaterials, they suffer from bioinertness. Using some surface treatment techniques, the bioactivity and also corrosion resistance of titanium implants could be improved. In...

متن کامل

Inhibitory Effect of Propolis against Corrosion Evaluated by Electrochemical Methods of Ti Grade 2 in Artificial Fluoride Saliva

The objective of this work was to demonstrate the effect of fluoride and propolis extract on the corrosion behavior of commercially pur titanium (cp-Ti grade 2) in artificial saliva. The inhibition studies were approved out on cp-Ti as dental implant in Fusayama-Meyer with the propolis extract using potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS). Parameters, such ...

متن کامل

Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva

Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva usi...

متن کامل

Screening on binary Ti alloy with excellent mechanical property and castability for dental prosthesis application

In the present study, the microstructure, mechanical property, castability, corrosion behavior and in vitro cytocompatibility of binary Ti-2X alloys with various alloying elements, including Ag, Bi, Ga, Ge, Hf, In, Mo, Nb, Sn and Zr, were systematically investigated, in order to assess their potential applications in dental field. The experimental results showed that all binary Ti‒2X alloys con...

متن کامل

Corrosion Performance of Fe-Cr-Ni Alloys in Artificial Saliva and Mouthwash Solution

Several austenitic stainless steels suitable for high temperature applications because of their high corrosion resistance and excellent mechanical properties were investigated as biomaterials for dental use. The steels were evaluated by electrochemical techniques such as potentiodynamic polarization curves, cyclic polarization curves, measurements of open circuit potential, and linear polarizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014